
• Day 4 Recap:  
– ADAPT-QAOA (2103.17047) 
– Feedback-based ALgorithm Quantum Optimization 

(FALQON, 2103.08619) 
– Data re-uploading for a universal quantum classifier 

(1907.02085) 

• Day 5 Plan: 
– Quantum Fourier Transformation and Phase estimation 
– Error correction 

– Bernstein-Vazirani Algorithm and Simon’s algorithm 
– Shor’s algorithm, Grover’s algorithm 



Discrete Fourier Transformation
• Simon’s algorithm  Shor’s algorithm (factoring numbers) makes use of QFT. 
• Discrete Fourier Transformation (DFT): signal processing, quantum theory 

(position  momentum). 
• Assume a vector  of N complex numbers:      
• DFT is a mapping from N complex # to N complex #.
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∑
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∑
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Discrete Fourier Transformation
• Convolution (circular convolution, periodic convolution, cyclic convolution)

DFT : fk ⟶ f̃j =
1

N

N−1

∑
k=0

w−jk fk

w = exp( 2πi
N ) Inverse DFT : f̃k ⟶ f̃j =

1
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wjk f̃k

1
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( f * g)i =
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fi gi−j , where g−m = gN−m (periodic condition)

• DFT turns convolution into point wise vector multiplication.
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∑
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∑
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∑
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Fast Fourier Transformation

• DFT:   

• FFT:   

• QFT:     where  

• Best known QFT:    
– “An improved quantum Fourier transform algorithm and 

applications” by L. Hales and S. Hallgren

O(N2) = O((2n)2)
O(N log N) = O(2n log 2n) = O(2n log n)
O(n2) N = 2n

O(n log n)



Quantum Fourier Transformation
• Quantum analog of discrete Fourier transformation  
• Used in Shor’s algorithm, computing discrete logarithm, 

quantum phase estimation, algorithms for hidden subgroup 
problem  

• Don Coppersmith (IBM) in 2002 
– https://arxiv.org/pdf/quant-ph/0201067.pdf



Quantum Fourier Transformation

yk =
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2
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• For classical discrete Fourier transformation

N = 2n

• QFT is defined similarly F : | j⟩ ⟶
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∑
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1

2
n

2n−1

∑
j′ =0

wj′ k′ |k′ ⟩

⟨ j′ |F†F | j⟩ =
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w( j−ℓ)k = δjℓ  and QFT is a unitary transformation.F†F = 1



Quantum Fourier Transformation
1
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∑
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w( j−ℓ)k = δjℓ
For j = j12n−1 + j22n−2 + ⋯ + jn20 =
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∑
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∑
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w = exp( 2πi
2n )



Quantum Fourier Transformation

F | j⟩ =
1

2
n ( |0⟩ + exp( 2πij

2 ) |1⟩) ( |0⟩ + exp( 2πij
22 ) |1⟩)⋯( |0⟩ + exp( 2πij

2n ) |1⟩)

=
1

2
n

n

⨂
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( |0⟩ + exp( 2πij
2k ) |1⟩)

• Binary fraction = expression in power of 1/2

In decimal form: 0. jℓ jℓ+1 ⋯ jm =
jℓ
2

+
jℓ+1

22
+ ⋯ +

jm
2m−ℓ+1

ji = 0 ,1

1 ≤ k ≤ n

0 ≤ j ≤ 2n − 1

 is not necessarily an integer: j j
2k

= j1 j2 ⋯ jn−k ⋅ jn−k+1 ⋯ jn =
n

∑
ν=1

jν 2n−ν−k

If  and ,n = 8 k = 3 j = j127 + j226 + j325 + j424 + j523 + j622 + j721 + j820

j
23

= j124 + j223 + j322 + j421 + j520 + j62−1 + j72−2 + j82−3

j1 j2 j3 j4 j5 . j6 j7 j8 ⏟binary fraction: 0 . j6 j7 j8



Quantum Fourier Transformation
j = j12n−1 + j22n−2 + ⋯ + jn−323 + jn−222 + jn−121 + j120 =
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jν2n−ν

exp(2πi
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=
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n ( |0⟩ + exp( 2πij

2 ) |1⟩) ( |0⟩ + exp( 2πij
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=
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2
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⨂
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( |0⟩ + exp(2πi 0 . jn−k−1 ⋯ jn) |1⟩)
=

1

2
n ( |0⟩ + exp(2πi 0 . jn) |1⟩) ( |0⟩ + exp(2πi 0 . jn−1 jn−2) |1⟩)

⋯( |0⟩ + exp(2πi 0 . j1 j2⋯jn) |1⟩)



Quantum Circuit for QFT
•    transforms into   | jℓ⟩ 1

2 [ |0⟩ + exp(2πi 0 . jℓ⋯jn) |1⟩ ]
=

1

2
[ |0⟩ + e2πi0.jℓ e2πi0.0jℓ+1⋯jn |1⟩ ]⏟ ⏟exp(2πi

jℓ
2 ) = exp(πijℓ) = (−1) jℓ use Rk = (1 0

0 e2πi/2k)
Controlled by the 
value of th qubit.jk

if {jk = 0 , Rk = 1
jk = 1 , Rk

1st qubit: |0⟩ + exp(2πi 0 . jℓ⋯jn) |1⟩

Start with | j⟩ = | j1⟩ | j2 j3⋯jn⟩
H1⟶

1

2 ( |0⟩ + (−1) j1 |1⟩) | j2 j3⋯jn⟩

=
1

2 ( |0⟩ + e2πi 0.j1 |1⟩) | j2 j3⋯jn⟩

R2 on q1 with q2 control 1

2 ( |0⟩ + e2πi 0.j1 e2πi j2/22 |1⟩) | j2 j3⋯jn⟩

=
1

2 ( |0⟩ + e2πi 0.j1 j2 |1⟩) | j2 j3⋯jn⟩

0.0jℓ+1⋯jn =
0.jℓ+1⋯jn

2



Quantum Circuit for QFT
R3 on q1 with q3 control 1

2 ( |0⟩ + e2πi 0.j1 j2 j3 |1⟩) | j2 j3⋯jn⟩

1

2 ( |0⟩ + e2πi 0.j1 j2 j3⋯jn |1⟩) | j2 j3⋯jn⟩
continue down

to qn

The entire procedure is repeated for all other qubits,  j2 , j3 , ⋯ jn

1

2
n [ |0⟩ + e2πi 0.j1⋯jn |1⟩ ][ |0⟩ + e2πi 0.j2⋯jn |1⟩ ] ⋯ [ |0⟩ + e2πi 0.jn |1⟩ ]

Use SWAP gate or relabel to obtain: F | j⟩ =
1

2
n

n

⨂
k=1

( |0⟩ + exp( 2πij
2k ) |1⟩)

1

2
n [ |0⟩ + e2πi 0.jn |1⟩ ][ |0⟩ + e2πi 0.j2⋯jn |1⟩ ] ⋯ [ |0⟩ + e2πi 0.j1⋯jn |1⟩ ]



Quantum Circuit for QFT
1

2 [ |0⟩ + e2πi 0.j1⋯jn |1⟩ ]
1

2 [ |0⟩ + e2πi 0.j2⋯jn |1⟩ ]

=
1

2 [ |0⟩ + e2πi 0.j1 |1⟩ ]

1

2 [ |0⟩ + (−1) jn |1⟩ ]

H R2 R3 Rn

H R2 R3 Rn

H

| j1⟩

| j2⟩

| j3⟩

| jn⟩

How many gates are required?

:  H + (n-1) controlled R gatesq1

:  H + (n-2) controlled R gatesq2

:  H + 0 controlled R gatesqn

→
→

→

n

n-1

1
} n(n + 1)

2
Also need 𝒪(n /2) SWAP gates

Overall scaling of QFT is 𝒪(n2)

• Classical Fourier Transform scales as  
• FFT:      for  

𝒪(N2) = 𝒪((2n)2)
𝒪(Nln(N )) N = 2n



Quantum Phase Estimation and 
Finding Eigenvalues

• Good example of phase kickback and use of QFT 
• Unitary operator   
• How to find eigenvalue? = How to measure the phase? 
• How to find  to a given level of precision? 
• Find the best n-bit estimate of the phase 

ϕ
ϕ

U : U |u⟩ = eiϕ |u⟩ , 0 ≤ ϕ < 2π

U2j |u⟩ = (eiϕ)2j

|u⟩ = eiϕ 2j |u⟩



Quantum Circuit for QPE

H|0⟩

|0⟩

|u⟩

|0⟩

|0⟩

H

H

H

U20

QFT†

U21 U2n−2
U2n−1

(0) (3)(2)(1)

{
{

n control 
registers

m eigenstate 
registers

QPE = H + controlled − U2j + QFT†



Quantum Circuit for QPE
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QPE = H + controlled − U2j + QFT†
|ψ0⟩ = |0⟩⊗n ⊗ |u⟩

|ψ1⟩ = (H |0⟩)
⊗n

⊗ |u⟩ =
1

2
n ( |0⟩ + |1⟩)

⊗n
⊗ |u⟩

|ψ2⟩ =
n−1

∏
j=0

CU2j 1

2
n ( |0⟩ + |1⟩)

⊗n
⊗ |u⟩



Quantum Circuit for QPE
H|0⟩

|0⟩
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|ψ2⟩ =
n−1

∏
j=0

CU2j 1

2
n ( |0⟩ + |1⟩)

⊗n
⊗ |u⟩

1

2 ( |0⟩ + |1⟩) ⊗ |u⟩ CU2j 1

2 ( |0⟩ ⊗ |u⟩ + U2j |1⟩ ⊗ |u⟩)
=

1

2 ( |0⟩ + eiϕ 2j |1⟩) ⊗ |u⟩

{
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U2j |u⟩ = (eiϕ)2j

|u⟩ = eiϕ 2j |u⟩



Quantum Circuit for QPE
|ψ2⟩ =

1

2
n ( |0⟩ + eiϕ 2n−1 |1⟩)( |0⟩ + eiϕ 2n−2 |1⟩)⋯( |0⟩ + ei2ϕ |1⟩)( |0⟩ + eiϕ |1⟩) ⊗ |u⟩

=
1

2
n

2n−1

∑
y=0

eiϕy |y⟩ ⊗ |u⟩} Phase kick-back: phase factor  has been 
propagated back from the second eigenstate 
register to the first control register

eiϕy

QFT |a⟩ =
1

2
n

2n−1

∑
k=0

e2πia/2n |k⟩ 2πia
2n

= iϕ ϕ = 2π( a
2n

+ δ)
a = an−1an−2⋯a0

•  is the best n-bit binary approximation of  

•  is the associated error.

2πa
2n

ϕ .

0 ≤ |δ | ≤
1

2n+1

|ψ3⟩ = QFT−1 |ψ2⟩ =
1
2n

2n−1

∑
x=0

2n−1

∑
y=0

e2πi(a−x)y/2n e2πiδy |x⟩ ⊗ |u⟩

QFT−1 |y⟩ =
1

2
n

2n−1

∑
x=0

e−2πixy/2n |x⟩

Operate only n control register.



Quantum Circuit for QPE
|ψ3⟩ = QFT−1 |ψ2⟩ =

1
2n

2n−1

∑
x=0

2n−1

∑
y=0

e2πi(a−x)y/2n e2πiδy |x⟩ ⊗ |u⟩

Operate only n control register.

(1) If , δ = 0
1
2n

2n−1

∑
y=0

exp( 2πi(a − x)y
2n ) = δax ⟶ |ψ3⟩ = |a⟩ ⊗ |u⟩ ⟶ ϕ =

2πa
2n

(2) If , δ ≠ 0 Measuring 1st register and getting the state  is the best n-bit 
estimate of . The corresponding probability is 

|x⟩ = |a⟩
ϕ Pa = |Ca |2 ≥

4
π2

≈ 0.405



Quantum Circuit for QPE

|ψ3⟩ = QFT−1 |ψ2⟩ =
1
2n

2n−1

∑
x=0

2n−1

∑
y=0

e2πix(ϕ−y/2n) |y⟩ ⊗ |u⟩

|ψ2⟩ =
1

2
n

2n−1

∑
x=0

e2πixϕ |x⟩ ⊗ |u⟩

QFT−1 |x⟩ =
1

2
n

2n−1

∑
y=0

e−2πixy/2n |y⟩

Probability of observing  =|y⟩ P(y) =
1
2n

2n−1

∑
x=0

e2πix(ϕ−y/2n)

2

=
1

22n

1 − r2n

1 − r

2

, r ≡ exp[2πi(ϕ −
y
2n )]

(1) If , ϕ =
y
2n

(2) If , ϕ ≠
y
2n

|ψ3⟩ = |y⟩ ⊗ |u⟩ P(ϕ =
y
2n

) = 100 %

closest n − bit approximation to ϕ = 0.ν1ν2⋯νn = ≡ ν ϕ − ν ≡ δ , 0 ≤ |δ | ≤
1

2n+1

r ≡ exp[2πi(ϕ −
y
2n )] = exp(2πiδ)

P(y) =
1

22n

1 − r2n

1 − r

2

,

length of minor arc
length of cord

=
2πδ2n

|1 − r2n |
≤

half circumference
diameter

≤
πR
2R

=
π
2

⟶ |1 − r2n | ≥ 4δ2n

-1
r2n = [exp(2πiδ)]

2n

= exp(2πiδ2n) = eiθ

1
-1

1

θ

r2n Length of minor arc = 
θ = 2πδ2n

Length of a cord from 1 to =r2n

|1 − r2n |



Quantum Circuit for QPE

P(y) =
1

22n

1 − r2n

1 − r

2

≥
1

22n ( 4δ2n

2πδ )
2

=
4
π2

> 0.405

length of minor arc
length of cord

=
2πδ

|1 − r |
> 1 , |1 − r | < 2πδ

1

-1

-1

1

θ

r = e2πiδ Length of minor arc = θ = 2πδ2n

Length of a cord from 1 to  =r |1 − r |

• We will get the correct answer with probability greater than a constant. 

• Probability of getting incorrect outcome can be calculated using |δ | >
1

2n+1

1-1

1

θ

r2n

-1

|1 − r2n | < 2
length of minor arc

length of cord
=

2πδ
|1 − r |

<
π
2

, |1 − r | > 4πδ

P(y) =
1

22n

1 − r2n

1 − r

2

≤
1

22n ( 2
4δ )

2

=
1

22n(2δ)2
If ,   δ =

c
2n

P(c) ≤
1

4c2

• N-bit estimate of phase   is obtained with a high probability. 
• Need to repeat the calculation multiple times. 
• Increasing n will increase the probability of success (not obvious but true). 
• Increasing n (# of qubits) will improve the precision of the phase estimate.

ϕ



Shor’s algorithm 
|0⟩⊗K QFT

U
H⊗K

|0⟩⊗n

y = f(x) = ax (mod N)



Discrete Logarithm Problem
• All standard public key encryption system and digital signature schemes 

are based on either factoring or discrete logarithm problem. 
• :  group of integers  under multiplication modulo . 

• :  generator of  (any  relatively prime to  will work) 

• The discrete logarithm of  with respect to base  is the element 
 such that . 

• Discrete logarithm problem:  Given a prime , a base  and an 
arbitrary element , find an  such that  

• Find the discrete logarithm of  with respect to base  such that 
 

• For a large , this problem is computationally difficult to solve. 
• It is a special case of Abelian hidden subgroup problem. 
• Can be generalized to arbitrary finite cyclic groups. 

ℤ*p {1, 2, ⋯, p − 1} p

b ℤ*p b p − 1
y ∈ ℤ*p b

x ∈ ℤ*p bx = y (mod p)

p b ∈ ℤ*p
y ∈ ℤ*p x ∈ ℤ*p bx = y (mod p)

y ∈ ℤ*p b
bx = y (mod p)

p



Quantum Error Correction

• quant-ph/9705052, Stabilizer codes and quantum error 
correction, Caltech PhD thesis by D. Gottesman 

• John Preskill 
– Quantum Computation 
– http://theory.caltech.edu/~preskill/ph229/



• Classically error correction is not necessary  
– Hardware for one bit is huge on an atomic scale 
– State 0 and 1 are so different that the probability of an 

unwanted flip is tiny. 
• Error correction is needed for transmitting signal over long 

distance where it attenuates and can be corrupted by noise. 
• Suppose we send one bit through a channel. 
• Use redundancy: 

• Apply majority rule:   

• Flip probability is p:   

Simple Classical (Bitflip) Error Correction

|0⟩ ⟶ |000⟩
|1⟩ ⟶ |111⟩ called codewords

{000,001,010,100} → 0
{111,110,101,011} → 1

p3 + 3(1 − p)p2 = 3p2 − 2p3 ≤ p, if p < 1/2



Quantum Error Correction
• QEC is essential and QC requires error correction 

– Physical system for a single qubit is small (often on an 
atomic scale) so any small external interference can disrupt 
the quantum system 

• Measurement destroys quantum information  
– Checking for error is problematic. 
– Monitoring means measuring which would alter quantum 

states 
• More general types of error can occur  

– (ex) phase error:   

• Errors are continuous 
– Unlike all or nothing bit flip errors for classical bits, errors ion 

qubits can grow continuously out of the uncorrupted state.

1

2
( |0⟩ + |1⟩) ⟶

1

2
( |0⟩ + eiϕ |1⟩)



Bit Flip Error Correction
• If the error rate is low, we hope to correct them by tailing the 

number of qubits as the classical case.

α |0⟩ + β |1⟩

|0⟩ ⊕
⊕|0⟩

α |000⟩ + β |111⟩}
α |0⟩ + β |1⟩ α |000⟩ + β |111⟩⟶ is not a clone of the input state

(α |0⟩ + β |1⟩)⊗3 = α3 |000⟩ + α2β( |001⟩ + |010⟩ + |100⟩)

+αβ2( |110⟩ + |101⟩ + |011⟩) + β3 |111⟩

|x⟩

|0⟩ ⊕
⊕|0⟩

|x⟩

|x⟩

|x⟩



Bit Flip Error Correction

• Assume that no more than one qubit is flipped (reasonable 
approximation if the error rate is small)

α |0⟩ + β |1⟩

|0⟩ ⊕
⊕|0⟩

X

X

X

or

or

|ψ⟩ = α |000⟩ + β |111⟩

|ψ1⟩ = α |100⟩ + β |011⟩ = X1 |ψ⟩

|ψ3⟩ = α |001⟩ + β |110⟩ = X3 |ψ⟩

|ψ2⟩ = α |010⟩ + β |101⟩ = X2 |ψ⟩

qubit 1 flipped

qubit 2 flipped

qubit 3 flipped

 four states are called “syndromes”⟶

• Classically to determine if one of the bits is flipped, we just have 
to look at them. However quantum mechanically, if we measure 

, we get  with probability  and  with  which 
destroys the coherent superposition. 

• Need to couple the codeword qubits to ancilla qubits and 
measure those, which does not destroy the coherent 
superposition.

|ψ⟩ |000⟩ |α |2 |111⟩ |β |2



Bit Flip Error Correction

|ψ⟩ = α |000⟩ + β |111⟩

1

X X

X

X

X

X X

Xxỹ

Xxy

Xx̃y3

2

|0⟩

|0⟩

|x⟩

|y⟩

} |ψ⟩
or

or}|ψ⟩

correction
|ψ⟩ : codeword |000⟩ → no ancilla flipped → x = 0 = y

codeword |000⟩ → both ancillas flipped → x = 0 = y
|ψ1⟩ : codeword |100⟩ → x flipped, y not flipped → x = 1, y = 0

codeword |011⟩ → x flipped, y flipped twice → x = 1, y = 0
|ψ2⟩ : codeword |010⟩ → x and y flipped once → x = 1 = 1

codeword |101⟩ → x and y flipped once → x = 1 = 1
|ψ3⟩ : codeword |001⟩ → x not flipped, y flipped → x = 0, y = 1

codeword |110⟩ → x flipped twice, y flipped → x = 0, y = 1



Bit Flip Error Correction

|ψ⟩ = α |000⟩ + β |111⟩

1

X X

X

X

X

X X

Xxỹ

Xxy

Xx̃y3

2

|0⟩

|0⟩

|x⟩

|y⟩

} |ψ⟩
or

or}|ψ⟩

correction

|ψ⟩ = α |000⟩ + β |111⟩

|ψ1⟩ = α |100⟩ + β |011⟩

|ψ3⟩ = α |001⟩ + β |110⟩

|ψ2⟩ = α |010⟩ + β |101⟩

Syndromes Bit flipped x y
None

1

2

3

0 0

1 0

1 1

0 1



Bit Flip Error Correction

|ψ⟩ = α |000⟩ + β |111⟩

1

X X

X

X

X

X X

Xxỹ

Xxy

Xx̃y3

2

|0⟩

|0⟩

|x⟩

|y⟩

or

or

correction

|ψ⟩ = α |000⟩ + β |111⟩

|ψ1⟩ = α |100⟩ + β |011⟩

|ψ3⟩ = α |001⟩ + β |110⟩

|ψ2⟩ = α |010⟩ + β |101⟩

Syndromes Bit flipped x y
None

1

2

3

0 0

1 0

1 1

0 1

  gate on qubit 1, only if x=1 and y=0      correcting Xxỹ → |ψ1⟩

  gate on qubit 2, only if x=1 and y=1      correcting Xxy → |ψ2⟩

  gate on qubit 3, only if x=0 and y=0      correcting Xx̃y → |ψ3⟩



Bit Flip Error Correction

• What if errors in quantum circuits can arise continuously from 
zero? (Assume the error rate is small)

|ψ⟩ ⟶ [1 + (ϵ1X1 + ϵ2X2 + ϵ3X3)] |ψ⟩ ϵi ∈ ℂ , |ϵi | ≪ 1

|ψ⟩ = α |000⟩ + β |111⟩

1

X X

X

X

X

X X

3

2

|0⟩

|0⟩

|x⟩

|y⟩

}|ψ⟩
or

or}|ψ⟩

X

X

X

X

X

correction

  gate on qubit 1, only if x=1 and y=0      correcting Xxỹ → |ψ1⟩

  gate on qubit 2, only if x=1 and y=1      correcting Xxy → |ψ2⟩

  gate on qubit 3, only if x=0 and y=0      correcting Xx̃y → |ψ3⟩



Stabilizer Formalism
• Useful method for error correction of arbitrary error. 
• Consider two Hermitian operators,  and Z1Z2 Z2Z3

Z2
i = I2×2 Z1Z2 = Z2Z1 (Z1Z2)2 = I2×2 (Z2Z3)2 = I2×2

⟶ A2 = I2×2 ⟶ eigenvalues = ± 1 Ax = λx A2x = λ2x = x λ2 = 1

⟶ [ Z1Z2, Z2Z3 ] = 0 Z1Z3 and Z2Z3 have the same eigenvectors .

|ψ⟩ = α |000⟩ + β |111⟩

|ψ1⟩ = α |100⟩ + β |011⟩ = X1 |ψ⟩

|ψ3⟩ = α |001⟩ + β |110⟩ = X3 |ψ⟩

|ψ2⟩ = α |010⟩ + β |101⟩ = X2 |ψ⟩

Syndromes Z1Z2 x y
1

-1

-1

1

0 0

1 0

1 1

0 1

1

1

-1

-1

Z2Z3

• Syndromes are eigenvectors of  and . 
• Stabilizers are operators whose eigenvalues distinguish the different syndromes.

Z1Z2 Z2Z3

Z1Z2 = (−1)x

Z2Z3 = (−1)y



Properties of Stabilizers and Syndromes
• Syndromes are eigenvectors of  and . 
• Stabilizers are operators whose eigenvalues distinguish the different 

syndromes. 
• Eigenvalues of a stabilizer in a syndrome is +1 or -1. 
• Eigenvalues of all stabilizers are +1 in the uncorrupted syndrome . 
• Operators for the stabilizers are built out of the single qubit operators  

and . 
• Syndromes with a single qubit error are obtained by acting on the 

uncorrupted syndrome with ,  and  operators. 

• For a general stabilizer  and a syndrome state ,  either 
commutes or anti-commutes with . 

–  involves a single Pauli’s operator (X, Y or Z). 

–  involves a product of Pauli's operators (X’s, and Z’s b/c ).

Z1Z2 Z2Z3

|ψ⟩
Zi

Xi

Xi Yi Zi

Aα |ψβ⟩ = Bβ |ψ⟩ Aα
Bβ

Bβ

Aα Y = iXZ



Properties of Stabilizers and Syndromes
• If ,   and eigenvalue of the stabilizer  in state 

 is +1. 

–  

• If ,   

–  

• Syndromes must be eigenvectors of all stabilizers  stabilizers must 
commute each other 

• How to determine efficiently if a stabilizer commutes or anti-commutes 
with the operator which generates a corrupted syndrome out of the 
uncorrupted syndrome? 

• For the case of 3-qubit bit-flip code, stabilizers are  and . 
• Operators which generate the corrupted syndromes from the uncorrupted 

syndrome:  ,  and .

[ Aα, Bβ] = 0 Aα |ψβ⟩ = + 1 |ψβ⟩ Aα
|ψβ⟩

Aα |ψ⟩ = AαBβ |ψ⟩ = BβAα |ψ⟩ = Bβ |ψ⟩ = |ψ⟩

{ Aα, Bβ} = 0 Aα |ψβ⟩ = − 1 |ψβ⟩

Aα |ψ⟩ = AαBβ |ψ⟩ = − BβAα |ψ⟩ = − Bβ |ψ⟩ = − |ψ⟩

→

Z1Z2 Z2Z3

X1 X2 X3



Properties of Stabilizers and Syndromes
• How to determine efficiently if a stabilizer commutes or anti-commutes 

with the operator which generates a corrupted syndrome out of the 
uncorrupted syndrome? 

• For the case of 3-qubit bit-flip code, stabilizers are  and . 
• Operators which generate the corrupted syndromes from the uncorrupted 

syndrome:  ,  and . 
–  commutes with   .  no sites in common 

 
–  has one common site with .  

Z1Z2 Z2Z3

X1 X2 X3

X1 Z2Z3 ⟷ [X1, Z2Z3] = 0 ∵
→ Z2Z3 |ψ1⟩ = + 1 |ψ1⟩

X2 Z2Z3 → X2Z2Z3 = − Z2X2Z3 = − Z2Z3X2
→ {X1, Z2Z3} = 0 → Z2Z3 |ψ2⟩ = − |ψ2⟩



• In the stabilizer formalism, we need to construct a set of Hermitian 
operators (stabilizers) which satisfy the following properties 
– They square to 1  (so eigenvalues are ). 
– They mutually commute (so they have the same eigenvectors). 
– The syndromes are eigenstates. 
– The uncorrupted syndrome has eigenvalue +1 for all stabilizers. 
– The set of  eigenvalues of the stabilizers uniquely specifies the 

syndrome. 
– Whether the eigenvalue is +1 or -1 is easily determined from the 

commutation properties of the stabilizer with respect to the operator 
which generate the corruption in the syndrome. 

±1

±1

Stabilizer Formalism



• Circuit which will measure the eigenvalues of stabilizers and hence 
determine which syndromes have occurred.

Stabilizer Formalism: Circuits

H H

U

|0⟩

|ψ⟩

|ϕ0⟩ |ϕ1⟩ |ϕ3⟩|ϕ2⟩

control

target

U = U†

U |ψ±⟩ = ± |ψ±⟩

|ψ⟩ ≡ α+ |ψ+⟩ + α− |ψ−⟩

|ϕ0⟩ = |0⟩ ⊗ |ψ⟩ = α+ |0ψ+⟩ + α− |0ψ−⟩

|ϕ1⟩ =
1

2
( |0⟩ + |1⟩) ⊗ |ψ⟩ =

α+

2 [ |0ψ+⟩ + |1ψ+⟩] +
α−

2 [ |0ψ−⟩ + |1ψ−⟩]
|ϕ2⟩ =

α+

2 ( |0ψ+⟩ + |1ψ+⟩) +
α−

2 ( |0ψ−⟩ − |1ψ−⟩)
|ϕ3⟩ = α+ |0ψ+⟩ + α− |1ψ−⟩



• If a measurement of the upper qubit gives  (with probability ), the 
lower qubit will be in state . 

• If a measurement of the upper qubit gives  (with probability ), the 
lower qubit will be in state . 

•  control bit tells us which eigenstates of U the target qubit is in.

|0⟩ |α+ |2

|ψ+⟩
|1⟩ |α− |2

|ψ−⟩
∴

Stabilizer Formalism: Circuits

H H

U

|0⟩

|ψ⟩

|ϕ0⟩ |ϕ1⟩ |ϕ3⟩|ϕ2⟩

control

target

H H

U

HH HZ

≡ ≡
H2 = 1
HZH = X



Bitflip code for 3 qubits

|ψ⟩ = α |000⟩ + β |111⟩

1

H

Z

X

X

X

H

Xxỹ

Xxy

Xx̃y3

2

|0⟩

|0⟩

|x⟩

|y⟩

} |ψ⟩
or

or}|ψ⟩

H

ZZ

Z

H

H H

U

|0⟩

|ψ⟩

|ϕ0⟩ |ϕ1⟩ |ϕ3⟩|ϕ2⟩

control

target



Bitflip code for 3 qubits

1

X X

X

X

X

X X

Xxỹ

Xxy

Xx̃y3

2

|0⟩

|0⟩

|x⟩

|y⟩

} |ψ⟩
or

or}|ψ⟩

|ψ⟩ = α |000⟩ + β |111⟩

1

H

Z

X

X

X

H

Xxỹ

Xxy

Xx̃y3

2

|0⟩

|0⟩

|x⟩

|y⟩

} |ψ⟩
or

or}|ψ⟩

H

ZZ

Z

H



Phase Flip
• With some probability p, the relative phase of  and  is flipped.|0⟩ |1⟩

|ψ⟩ = α |0⟩ + β |1⟩ ⟶ α |0⟩ − β |1⟩

(α
β) ⟶ Z(α

β) = ( α
−β) in Z-basis (computational basis)

Phase 
Flip

Bit Flip |ψ⟩ = α |0⟩ + β |1⟩ ⟶ α |1⟩ + β |0⟩ X |0⟩ = |1⟩
X |1⟩ = |0⟩

(α
β) ⟶ X(α

β) = (β
α)

• Phase flip error model can be turned into the bit-flip error model by 
transforming to the  basis (X basis).±

| + ⟩ =
1

2 ( |0⟩ + |1⟩) | − ⟩ =
1

2 ( |0⟩ − |1⟩)
Transformation is Hadamard: H |0⟩ = | + ⟩

H |1⟩ = | − ⟩

H | + ⟩ = |0⟩

H | − ⟩ = |1⟩



Phase Flip
• In the X-basis, roles of X and Z are interchanged.

X |0⟩ = |1⟩
X |1⟩ = |0⟩

Z |0⟩ = |0⟩
Z |1⟩ = − |1⟩

Z | + ⟩ = | − ⟩
Z | − ⟩ = | + ⟩

X | + ⟩ = | + ⟩
X | − ⟩ = − | − ⟩

Bit-flip

Bit-flipPhase-flip

Phase-flip

In computational basis 
(Z-basis) In X-basis

• Stabilizers to detect phase errors involve X-operations as opposed to those 
used to detect bit-flip errors which involve Z-operators.

α |0⟩ + β |1⟩

|0⟩ ⊕
⊕|0⟩

X

X

X

α |000⟩ + β |111⟩

Circuit to encode 3-qubit bit-flip code acting 
on a linear combination of  and |0⟩ |1⟩

α |0⟩ + β |1⟩

|0⟩

|0⟩

α | + + + ⟩ + β | − − − ⟩

H

H

HX

X

Encoding circuit for the 
3-qubit phase flip


